
PrairieLearn Implementation

for CPR E 288
DESIGN DOCUMENT

Group Number: 33

Client: Philip Jones

Advisor: Philip Jones

Scrum Master: Carter Murawski

Consultant: Matt Graham

Quality Assurance: Chris Costa

Project Manager: Tyler Weberski

Technical Lead: Mitch Hudson

Construction: Andrew Winters

Email: sdmay24-33@iastate.edu

Website: https://sdmay24-33.sd.ece.iastate.edu/

Revised: 11/30/23 Version 2

mailto:sdmay24-33@iastate.edu
https://sdmay24-33.sd.ece.iastate.edu/

2

Executive Summary

Development Standards & Practices Used
● IEEE 610 Standard Glossary of Software Engineering Terminology

● IEEE 83o Software Requirements Specifications

● IEEE 1016 Software Design Description

● IEEE 1074 Software Development Life Cycle

● IEEE 2050 RTOS for embedded systems standard

Summary of Requirements

● Questions must be autograded as much as possible

● Must have questions and assignments for each existing assignment in the course

● Organize students into sections and semesters for easy grading

● Connect with ISU’s existing Okta SSO for easy log-ins

● Connect with Canvas to let students see grades immediately

● Integrate emulator for running student bot code in a virtual environment

Applicable Courses from Iowa State University Curriculum
● CPR E 288

New Skills/Knowledge acquired that was not taught in courses
● Python / NodeJS / HTML / C Programming

● PrairieLearn Framework

● Okta SSO, OAuth2, LTI Integration

● Server Management / Security

● Git Integration

3

Table of Contents
1 TEAM 5

1.1 TEAM MEMBERS 5
1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 5
1.3 SKILL SETS COVERED BY THE TEAM 5
1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 5
1.5 INITIAL PROJECT MANAGEMENT ROLES 5

2 INTRODUCTION 6
2.1 PROBLEM STATEMENT 6
2.2 REQUIREMENTS & CONSTRAINTS 6
2.3 ENGINEERING STANDARDS 7
2.4 INTENDED USERS AND USES 7

3 PROJECT PLAN 8
3.1 TASK DECOMPOSITION 8
3.2 PROJECT MANAGEMENT/TRACKING PROCEDURES 9
3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 9
3.4 PROJECT TIMELINE/SCHEDULE 10
3.5 RISKS AND RISK MANAGEMENT/MITIGATION 11
3.6 PERSONNEL EFFORT REQUIREMENTS 11
3.7 OTHER RESOURCE REQUIREMENTS 12

4 DESIGN 13
4.1 DESIGN CONTENT 13
4.2 DESIGN COMPLEXITY 13
4.3 MODERN ENGINEERING TOOLS 13
4.4 DESIGN CONTEXT 13
4.5 PRIOR WORK/SOLUTIONS 14
4.6 DESIGN DECISIONS 14
4.7 PROPOSED DESIGN 14

4.7.1 DESIGN 0 (INITIAL DESIGN) 15
4.7.2 DESIGN 1 (DESIGN ITERATION) 16

4.8 TECHNOLOGY CONSIDERATIONS 17
4.9 DESIGN ANALYSIS 17

5 TESTING 19
5.1 UNIT TESTING 19
5.2 INTERFACE TESTING 19
5.3 INTEGRATION TESTING 19
5.4 SYSTEM TESTING 19
5.5 REGRESSION TESTING 19
5.6 ACCEPTANCE TESTING 20
5.7 SECURITY TESTING 20
5.8 RESULTS 21

4

6 IMPLEMENTATION 23
7 PROFESSIONALISM 24

7.1 AREAS OF RESPONSIBILITY 24
7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS 25
7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA 26

8 CLOSING MATERIAL 27
8.1 DISCUSSION 27
8.2 CONCLUSION 27
8.3 REFERENCES 27
8.4 APPENDICES 27

8.4.1 TEAM CONTRACT 27

List of Figures

FIGURE 1. FIRST SEMESTER TIMELINE

FIGURE 2. SECOND SEMESTER TIMELINE

FIGURE 3. INITIAL DESIGN DIAGRAM

FIGURE 4. FUNCTIONALITY GANTT CHART

FIGURE 5. DESIGN ITERATION DIAGRAM

FIGURE 6. PRAIRIELEARN REPORTING ON COMPILATION ERRORS IN QUESTION CODE.
FIGURE 7. PRAIRIELEARN ISSUE PAGE WITH A BROKEN QUESTION.

List of Tables

TABLE 1. PERSONNEL EFFORT REQUIREMENTS

TABLE 2. DESIGN CONTEXT

TABLE 3. AREAS OF RESPONSIBILITY IEEE-CS/ACM COE
TABLE 4. PROJECT SPECIFIC RESPONSIBILITY AREAS

List of Symbols

SSO - SINGLE-SIGN ON

JS - JAVASCRIPT
PL - PRAIRIELEARN
CPR E 288 - COMPUTER ENGINEERING 288
ISU - IOWA STATE UNIVERSITY

CYBOT - OPENCONNECT ROOMBA USED BY STUDENTS

UFW - UNCOMPLICATED FIREWALL (FIREWALL SOFTWARE)

5

1 Team

1.1 TEAM MEMBERS

- CARTER MURAWSKI

- CHRIS COSTA

- MATT GRAHAM

- TYLER WEBERSKI

- WILLIAM HUDSON

- ANDREW WINTERS

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Embedded Systems Programming

Python/JS/C Programming Language

1.3 SKILL SETS COVERED BY THE TEAM

Embedded Systems Programming - Carter Murawski, Tyler Weberski, Chris Costa, Matt Graham

Python - Mitch Hudson, Carter Murawski, Matt Graham, Chris Costa

JavaScript - Mitch Hudson, Tyler Weberski, Matt Graham, Chris Costa

C - Mitch Hudson, Carter Murawski, Andrew Winters, Tyler Weberski, Matt Graham, Chris Costa

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

GitLab

1.5 INITIAL PROJECT MANAGEMENT ROLES

Project Lead(Tyler Weberski): Coordination, Scheduling, assembly, and delivery of products

Scrum Master(Carter Murawski): Documents, Organizes, and tracks development.

Domain Expert(Mitch Hudson): Discover and explain what the team needs to know about the
application area, context, and adjacent systems

Quality Assurance(Chris Costa): ensure that delivered products accurately and completely
describe/satisfy the requirements

Consultant(Matthew Graham): Advises, strategizes, and plans for the development of the product

Construction(Andrew Winters): Oversees the implementation and execution of the project

6

2 Introduction

2.1 PROBLEM STATEMENT

Our project is to make a more intuitive and engaging learning experience using the PrairieLearn Framework
for students in the CPR E 288 course. Our project will need to create a new course with new questions that
are customizable and randomized, where students can answer the questions, and have them be autograded
once submitted.

2.2 REQUIREMENTS & CONSTRAINTS

Functional Requirements

● Questions must be autograded as much as possible
● Must have questions and assignments for each existing assignment in the course
● Organize students into sections and semesters for easy grading
● Connect with ISU’s existing Okta SSO for easy log-ins
● Connect with Canvas to let students see grades immediately
● Integrate emulator for running student bot code in a virtual environment

Security Requirements

● The firewall should prevent undesired access to the system
● SSH needs to be secured to prevent unauthorized access to the system
● Traffic between the users and the server must be encrypted and protected from modification
● User-submitted code should be sandboxed to prevent it from affecting the system as a whole
● The load balancer should protect the system from undesired downtime

Non-Functional Requirements

● Updating questions should be easy and pain-free for TAs and instructors
● Assignments should load quickly
● Questions should be intuitive and understandable
● Grading should be efficient and give feedback in a reasonable time frame
● Grading feedback should be understandable and helpful to the student.

UI Requirements

● Pages should adhere to existing web standards
● UI should be easy to use and intuitive for new users
● Web pages and interfaces should be visually appealing

Performance Requirements

● System should be able to handle at minimum 30 consecutive users compiling code
● System should have less than 5% downtime

7

2.3 ENGINEERING STANDARDS

IEEE 610 Standard Glossary of Software Engineering Terminology - Having technical terms for ourselves to
communicate, as well as future groups to use, will be key in order to speed up certain processes rather than
describing what should be known when attempting to further this project

IEEE 830 Software Requirements Specifications - This standard is heavily involved with what we are doing
now, finding out the different functional and nonfunctional requirements, as well as the use-cases.

IEEE 1016 Software Design Description - Throughout our process, documenting our designs specifically
within the Prairie-Learning work will be critical as the UI look and functionality will need various
documentation aspects.

IEEE 1074 Software Development Life Cycle - Going through any of the lifecycle models will be key for the
flow of the project. Although we don’t have a specific lifecycle model set yet, it will be a decision made soon
in order to have a fluid project when software development starts

IEEE 2050 RTOS for embedded systems standard - Using this standard is with the various topics we will
need to cover from the CPR E 288 Intro to embedded systems class.

Programming Languages: Python, Javascript, C - These languages will be the main focus of our software
development, and being comfortable with all 3 will be vital to success for the team.

2.4 INTENDED USERS AND USES

Professor Jones and the CPR E 288 classes benefit from our project, as they would use our results to have an
alternative to their homeworks with the autograder.

An instructor needs to be able to create courses for students to register for. The instructor must be able to
add exams and homework assignments. The instructor must be able to create questions for both the exams
and homework assignments they create.

A student must be able to register for a course. In this course, a student must be able to complete exams and
homeworks assignments assigned to them by the instructor. The student should be able to see the grades
they receive on these exams and homework assignments.

8

3 Project Plan

3.1 TASK DECOMPOSITION

First, we need to create questions and assignments in the PrairieLearn development environment that can
be auto graded and used by students. Then, once we have our course content, we can create and integrate an
emulator for testing labs.

Once the course content is completed, we will set up a production server through the university that is
accessible by students. This server will need to be secured and configured.

Finally, we will test the system against our performance and non-functional requirements and ensure
everything is in order.

Create questions for homework assignments / labs / quizzes / exams

● Going through the course material and create questions to match course content
○ Binary, Decimal, Hex conversion
○ Digital logic
○ Clock functionality
○ Register bit initializing
○ Datasheet questions
○ C and assembly coding questions

● Set up auto grader for compiling code and testing it
○ Research PrairieLearn auto grading functionality
○ Test with basic programming questions
○ Once tested, implement it with real questions

Create / Integrate CyBot emulator for

● Create an emulator for the CyBot and microcontroller, that will take in uploaded student code and
show the results of running the code.

○ Research the TIVA microcontroller and possible emulator solutions
○ If needed, create C code for emulating the TIVA microcontroller
○ Test microcontroller emulation

● This will have to be connected to the auto grader docker environment because the code needs to be
compiled

○ Create environment to auto grade
○ Connect student code to emulator
○ Test student code using the emulator

Implement Okta SSO

● PrairieLearn by default does not support Okta as a login method.
● We need to do research and develop a method for PrairieLearn to use Okta

○ Research Okta and OAuth2 login flow
○ Create a basic Okta login program and test outside of PrairieLearn
○ Create fork of PrairieLearn repository

■ See how PrairieLearn uses other login methods
■ Update the codebase with the new method

9

○ Test the new code with Okta development server
○ Once working with dev server, test with ISU login servers

Create Production Server

● Have the university create a virtual machine
● Secure the virtual machine with public key authentication and multi-factor authentication
● Install required software (Git, PrairieLearn, Nginx, UFW, Docker)
● Configure PrairieLearn

○ Set up config.json to include login parameters
○ Set up course syncing with Git
○ Configure auto grader Docker connection

● Configure UFW
○ Allow HTTPS, HTTP, and SSH
○ Disallow all other incoming traffic

● Get SSL certificates through the university
● Configure Nginx

○ Set up HTTPS server
■ Reverse proxy to the PrairieLearn port
■ Connect to SSL certificates from university

○ Set up HTTP server to redirect all traffic to HTTPS port

Test Production Server

● Test security
● Test under load

○ Make sure the server fits performance requirements
○ Check to see if multiple servers are required

● (If needed) Set up load balancer and multiple PrairieLearn servers

3.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will be using an agile project management style due to this style being non-linear and incremental. This
style fits our project as our goals are determined by decisions made throughout the development process.
Many decisions that we make regarding what is to be done are dependent on previous tasks that are
completed; however, this process is not linear. We will prioritize the development of different features based
on what we feel is the most important at that time. For example, a stretch goal of our project is to have
microcontroller emulators built into the PrairieLearn framework that can be compatible with the
autograder. If we are able to achieve this goal. then we are able to continue incrementally building in
compatibility with physical microcontrollers in addition to the emulators. This process of microcontrollers
and emulators can be done before, during, or after the development of a better auto grader or different
question types.

We will be using Git through GitLab to track progress, which includes their issue boards. We will also do
collaboration through git merge requests and an external Discord server for communication.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Improve Auto Grader
○ The Auto Grader must take in questions and output students score with 100% accuracy.

10

● Interactive Question Development
○ Develop 5-10 new interactive question formats that can be easily changed for each

assignment that integrate with the auto grader.
○ Develop a randomization function that can change numbers and other specific parts of a

question while keeping the same format. This will integrate with the auto grader with
100% accuracy.

● Implement Emulator
○ Create an Emulator that can take in user code and simulate the real world Cybot.
○ Simulate the driving functionality with 95% accuracy.
○ Simulate the object detection functionality with 80% accuracy

● Create Microcontroller
○ Have a working microcontroller that allows user interaction. Further functionality will be

determined as the project progresses.

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1. First Semester Timeline

11

Figure 2. Second Semester Timeline

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Our project is entirely software based, which means the only risks we need to contend with are performance
targets and availability requirements, and the functionality of our tools. Since our project uses docker
containers for compiling and simulating code, the server would need to be fast enough to accommodate
several classes worth of students at a time. We also need to ensure the server has as little downtime as
possible to allow students to work on labs and assignments at all times, especially near due dates. The last
risk we could have is PrairieLearn or the emulator could fail to meet specifications and will not work for
what we need it to do.

The performance risk is going to be relatively low, probably around .1, since PrairieLearn is a mostly
client-based web framework that doesn’t take much processing power on the server side beyond auto
grading. The availability risk should be around .2 because we can set up multiple servers as redundant
backups for when downtime is needed. Finally, the risk for tools not meeting expectations is probably
around a .4 considering no one in the team has experience with them. Thanks to that risk, our mitigation
plan is to do some market research for tools that may be better suited to our needs. Using that research, if
we ever find out PrairieLearn cannot fulfill our needs, we can quickly find a tool to fill that area in.

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Projected Effort
(High/Medium/Low)

Total Person Hours

Improve Auto Grader Medium 30

Create Questions for
Assignments/labs/quizzes/exa
ms

Medium 60

Integrate Emulator High 120

12

Task Projected Effort
(High/Medium/Low)

Total Person Hours

Integrate Physical
Microcontrollers

High 180

Table 1. Personnel Effort Requirements

The first task to be completed is to improve the existing autograder through the PrairieLearn framework.
This is a medium effort task to complete because the auto grader is already implemented in the system, but
needs various improvements such as allowing for more grading and automating options. This will take
about 20 hours of work to complete and test in the system. The next task is to create questions for multiple
assignments, quizzes, labs, and exams for students to utilize. This is a medium effort task for the team
because with course material, questions are already created and just need to be implemented. Some
assignments are completed from the previous group, but can be improved with more variability and better
grading. Task 2 will take about 60 hours of total time to complete and include all questions available
through the course material. Task 3 involves integrating an emulator for the Cybot and microcontroller.
Implementing this requires taking students' code and giving the results of the running code. This is a high
effort task because it involves creating an emulator and configuring it to the required needs. Task 3 also has
an estimated time of 120 hours for completion because of the large amount of development and testing that
will be involved. The final task is to integrate Physical Microcontrollers. The goal is to have a working
microcontroller that will allow users to interact with. This is a high effort level because it involves
configuring and connecting a microcontroller to work with PrairieLearn. This task will take the most time
because it will involve a large amount of development and testing to be completed.

3.7 OTHER RESOURCE REQUIREMENTS

Other potential resources we may need for our project are the CPR E 288 course material, example
questions, access to the entire PrairieLearn framework, and access to the microcontrollers used in CPR E
288.

13

4 Design

4.1 DESIGN CONTENT

We are designing many new interactive questions that will test students' knowledge in more interesting
ways. These questions must be creative and test students in new ways beyond simple multiple choice or fill
in the blank.

We will also design an emulator to simulate the CyBot in 288. The emulator must accurately represent the
real world so that students can more easily simulate their code without needing a physical bot and test
space.

4.2 DESIGN COMPLEXITY

For this project, there are a number of components that work together. One component is the PrairieLearn
framework and course content. We need to create content that tests students’ understanding of the course
material. Along with that, we need to create an autograder that runs in Docker containers. The autograder
needs to be able to compile the C code given by students, and determine the output. This will require an
understanding of C and Docker to create robust software following many engineering standards. Another
piece is implementing an emulator for the microcontroller used in class, and connecting it to a simulated
CyBot. These simulations need to accurately represent what would happen if the code was run on physical
hardware. The simulation should also allow the students to see a representation of each lab and the CyBot
itself. This will require the combination of computer, electrical, and software engineering knowledge.

4.3 MODERN ENGINEERING TOOLS

The modern engineering tools we used for this design are Git/Gitlab and Ubuntu. We utilize git for our
project in order to track changes and to have version control for all additions that are made. We will make
use of Gitlab to track progress and keep a backlog and activity board to measure tasks and progress.
VirtualBox and Ubuntu are tools used to create a virtual environment in order to run PrairieLearn.

4.4 DESIGN CONTEXT

Area Description Examples

Public health,
safety, and
welfare

Our project does not have any impact on the
public health, safety, or welfare of our
stakeholders

Our project does not have any impact
on the public health, safety, or welfare
of our stakeholders

Global, cultural,
and social

The project can reflect the values of the
faculty creating coursework. It will also
improve the learning experience of students,
promoting participation.

The implementation allows the users
on the faculty level to create
questions with a high level of
customization, allowing them to
express themselves in many ways.

Environmental Our project does not have any impact on
environmental factors.

Our project does not have any impact
on environmental factors.

14

Area Description Examples

Economic This project has the ability to create jobs and
provide a product to make a profit. It also
trains new engineers who will join the
workforce in the near future.

The product provides an opportunity
for the sale of a product in order to
generate revenue for the owners of
the project. The development of this
project also offers job opportunities
for developers.

Table 2. Design Context

4.5 PRIOR WORK/SOLUTIONS

A lot of similar products are in place for the autograder, such as Renaissance, MasteryConnect, and
Gradescope, just to name a few of the bigger ones. These groups have assessment problems which
teachers/professors can create questions and set the answers for students to fill out. This would include
homeworks or exams, with the option for manually graded questions for long response. These competitors,
however, do not have any form of emulator built in for microcontrollers, something that can set PrairieLearn
apart.

We are following previous work, and the advantages we will gather are having a few items to work off of and
using previous documentation to help us get started. The previous group had good documentation on the
basic autograder function and made videos guiding us through setup. The shortcomings are that there
wasn’t as much done in the further development from the group last year, so past the initial autograder fixes
we are doing, they have nothing we can build off of there.

A few pros for our solution would be help for the CPR E 288 class and an emulator that will allow students
to have better access to the course labs and testing, which was a bulk of the work and learning in the class.
This emulator will allow students to work from home without having to have a microcontroller with them
physically. Some sections of CPR E 288 had an emulator in the past. The previous emulators used were not
very user-friendly and are in need of a replacement, something we believe PrairieLearn has the ability to
improve upon. This also gives students different ways to learn with more interactive questions to really help
with understanding of different concepts. Doing more problems in different ways can make students
succeed more and more.

A few cons for our solution come more from the autograder side, and the competition having UI that people
may prefer more. We also know that these other products are more user-friendly and well-respected than
the PrairieLearn framework. We can also see that the autograder must be independent for each question
due to how the framework is structured, something that limits the ease of implementation. Another con is
user friendliness in general, getting access to PrairieLearn is a little difficult and might be a hassle for some
students.

4.6 DESIGN DECISIONS

● We are going to use PrairieLearn as the framework for distributing course content
● We will use Docker containers to compile and run code for the autograder
● We will use Git and GitLab to keep track of versioning
● We will use a campus server for the final production server

15

4.7 PROPOSED DESIGN

We have all set up the PrairieLearn environment which we will be using to have questions and the
autograder working. In this we have implemented a few different forms of questions including multiple
choice and fill in the blank, which would then be autograded for the correct response. These questions have
randomized numbers in order for students to get slightly different questions, but still keep the concept the
same.

4.7.1 DESIGN 0 (INITIAL DESIGN)

Figure 3. Initial Design Diagram

The current design uses PrairieLearn as the interface between the simulations and the end user.
PrairieLearn uses Docker containers for each question and the code given by the user is put into the
emulator / CyBot simulation. To implement this, we will utilize the existing PrairieLearn framework in order
to create questions through the UI and built-in text editors using JavaScript and Python. These questions
are then published to students through the framework’s implementation. We will then source an emulator
and make any necessary modifications in order to integrate it onto the PrairieLean site. This emulator will
be used to simulate microcontrollers and allow questions to be made that utilize this. The emulator will aim
to allow students to upload their code and run it on what would be the microcontroller and see its behavior.

16

FUNCTIONALITY

Our design is intended to create a better learning experience for students throughout CPR E 288. The
questions and auto grader create a more engaging learning experience that will help grasp lecture material.
The emulator then helps students in the lab as it makes it easier and faster to test code without needing a
physical CyBot and testing space. Both of these are used increasingly throughout the course as the labs and
lecture material becomes more complex.

Figure 4. Functionality Gantt Chart

The current design satisfies these functional requirements as it lays out a plan to finish the auto grader,
create more questions for students, and then create an improved emulator to be used in the lab.

4.7.2 DESIGN 1 (DESIGN ITERATION)

Figure 5. Design Iteration Diagram

17

In this matured design, we have a more cemented view of the overall system design. There will be several
servers set up as shown above, and each of them will be behind a load balancer that ensures no single server
is being overloaded.

What led to this iteration was a more thorough understanding of the requirements for PrairieLearn as well
as research into the design of production servers. The major changes from Design 0 are the addition of
security features. These include the firewall, Nginx, and SSH security changes. The firewall prevents
connections from any port except 22 (SSH), 80 (HTTP), and 443 (HTTPS) and fulfills the security
requirement for the firewall. Port 22 is handled by the SSH daemon, and ports 80 and 443 are handled by
Nginx. Nginx was added to provide encrypted traffic between the user and the server through HTTPS on
port 443, fulfilling that security requirement. This traffic is then internally routed to the Docker container
running the PrairieLearn server. Setting it up this way allows us to utilize the robust security and efficiency
provided by NGINX while still using PrairieLearn’s server. SSH is how we as the developers access the server
for things like maintenance and updates. To protect this important part of the server, we added multi-factor
authentication and public key authentication. These changes fulfill the security requirements related to
connecting and accessing server resources.

Finally, the docker containers running the autograders are used for sandboxing user code. Sandboxing
protects the system from user-submitted code that might be dangerous, and fulfills that security
requirement. Thanks to Docker, multiple autograder containers can run at the same time, helping with
handling multiple users at once, fulfilling the performance requirements. The autograder containers
perform all of the autograding tasks, and the PrairieLearn container runs PrairieLearn. A lot of our
functional requirements are built in to PrairieLearn, such as organizing sections, creating / modifying
questions, and displaying pages in visually appealing ways.

4.8 TECHNOLOGY CONSIDERATIONS

There are many strengths for the technologies we have decided on. UFW is a simple and effective firewall
program that comes built-in with our operating system, and the SSH security configuration offers a strong
balance of security and user-friendliness. Docker is an extremely efficient way of creating sandboxed
environments without much overhead, improving security and efficiency. Finally, NGINX is a well-known
and actively maintained web server program, which neatly slots into our web stack.

There are only a few weaknesses with our design, and they mostly come from the tradeoffs made in our SSH
configuration. Due to the need for easy access from new computers put forward by our advisor, we still allow
password authentication, which is much less secure than public key authentication alone. We have
compromised by adding multi-factor authentication, but SSH still sends passwords in tunneled plaintext,
which can be quite dangerous.

Some alternatives we can look into are switching out NGINX for a different reverse proxy, such as Apache,
and running PrairieLearn natively instead of in a Docker container. The docker container is much more
difficult to update with our own code, but stays up to date with PrairieLearn’s official repository much more
readily. Running PrairieLearn natively can solve the issue of running our own code, but can make it more
cumbersome to update it with the official repository.

18

4.9 DESIGN ANALYSIS

Our design proposed in 4.7.1 was fairly basic and undefined due to our lack of knowledge surrounding
PrairieLearn and its requirements. Since then, we have revised our design and updated it to what it is now in
4.7.2. We have also started implementing a server for production. During this implementation we ran into
several issues and have refined our design to resolve them. These include security requirements, and the
introduction of a firewall and Nginx for handling incoming requests. Making these changes led us to
updating our design diagram and improving it to what is seen in 4.7.2.

The design proposed in 4.7.2 is promising and seems to be handling what we need it to, at least during
development. The design is able to keep up with the load of developers, but it remains to be seen if it will be
enough to handle the students in the future. Our security testing has also shown the design to be fairly
robust and secure.

In the future, we will iterate on the design and improve efficiencies, as well as implement quality of life
improvements, such as integration to Canvas and ISU’s Okta Single Sign-On (SSO) servers. Adding Canvas
integration will allow grades from PrairieLearn to automatically be reflected in the gradebook used by the
University, updating students’ grades immediately. Connecting our app to ISU’s Okta SSO allows users to
log in with the same account used for every other ISU app, including Canvas, Microsoft Office, and
AccessPlus. It also keeps track of sessions, so if you’ve signed into Canvas, it will automatically sign you in to
every other Okta app as well, such as PrairieLearn.

19

5 Testing

5.1 UNIT TESTING

For our project, the ‘units’ being tested are the individual questions. These questions are tested within
PrairieLearn where they are compiled and previewed. The built-in grading system allows us to test and
ensure that the questions are working as intended. Most of the tools used are built into the PrairieLearn
framework as files and questions can be edited directly through the web interface. The other way we are
testing our units is by showing them to our advisor at each weekly meeting to make sure they look and
function as he wants. He has also helped with making sure the material is correct, as the homeworks we are
implementing was created by him.

Another set of unit tests are the auto grader Docker containers. Since each question will create a new
container to auto grade, we can test that the grading is working as intended. To do this, PrairieLearn
provides a helpful interface for working with the grader containers and testing their functionality. For
example, if a compilation error shows up, it will be reported when submitting a response to the question.

5.2 INTERFACE TESTING

The interface in our design is within the PrairieLearn environment. Within each question we have a json,
html, and python file with work with each other. Then we make an assignment which combines multiple
questions made. We test how they each communicate and make sure that the output works as desired. This
is done within the PrairieLearn environment, giving us feedback on which issues are occurring within the
questions.

5.3 INTEGRATION TESTING

The most important connection paths we have is making sure each individual question works on its own,
and can be integrated with no issues into one big assignment, so that the students going through the
homework can easily finish it. These will be tested by individually going through the Unit testing for each
question, and ensuring proper formatting there. After that, we will go through the interface testing and
connect the questions into an assignment. This in turn will be finishing the integration testing. The tools we
will be using are what are available within the PrairieLearn environment we are using.s

5.4 SYSTEM TESTING

The system can be tested by testing homework assignments as a whole and making sure they all work
properly each time a question is attempted. This will ensure that when students go to attempt the
homeworks that it all works properly and their learning time will be maximized. A lot of the questions
within the homework are randomized so testing the homework assignments multiple times will be
beneficial to make sure that random value in a question doesn’t mess up the student.

5.5 REGRESSION TESTING

For regression testing, we will ensure that any new addition will be contained in its own container for each
question, homework, and class. Containerization is a tool that was implemented in PrairieLearn previously
and helps ensure that everything interacts with the necessary components. One critical feature we need in
order to ensure that PrairieLearn will continue to run is to have every component of the system scalable.
Scalability is required for this project because PrairieLearn is a constantly growing system that needs to be
adjusted for size and requests over time because it is a requirement driven by PrairieLearn requirements

20

5.6 ACCEPTANCE TESTING

In order to demonstrate the design requirements were met, we will ensure that all pages made on the
PrairieLearn website match the initial format given. Part of this is ensuring that all code is in a readable
format and that each page has a consistent layout. To test this, we will manually go through each of our
courses, assessments, and questions to ensure that they match the existing framework. To demonstrate that
our functional requirements have been met, we will ensure that each question is auto-graded to an
appropriate level for a subset of randomized outputs. Finally, in order to show that our non-functional
requirements have been met, we will take a holistic view of the system and meet with our advisor to ensure
that the user experience and system properties have been provided. We will involve our client in the
acceptance testing by allowing them to use our site and give feedback on each of the three above kinds of
requirements. Specifically, we will meet with the client on a regular basis after deliverables have been
completed as well as at the termination of development.

5.7 SECURITY TESTING

A suggestion from our advisor was to give the production server to one of the cybersecurity classes for
them to attempt to break in. We plan to use this to both give the cybersecurity students an interesting
project and also test our security measures.

For integrity, the course information is retrieved using Git, so any changes are visible in the Git history.
To maintain confidentiality, we use encryption and logins are handled using OAuth2. This allows us to use
the security measures of Google and Okta in our app to protect user information. We also use HTTPS to
encrypt traffic between the client and server, making it very difficult to see what the user is doing.
Finally, for availability, we plan to run multiple servers behind a load balancer that can prevent our servers
from being overloaded, and ensure downtime is minimal.

To protect the server, we use SSH with public key authentication and multi factor authentication when
using a password, as well as a firewall that only accepts traffic from SSH, HTTP, and HTTPS. We also use
NGINX to reverse proxy the PrairieLearn server and enable HTTPS, encrypting traffic between client and
server. NGINX is also set up to redirect all HTTP traffic to HTTPS, ensuring encrypted traffic.

Finally, all user submitted code is compiled and run in separate docker containers that are isolated from the
rest of the system. This means that any and all user input is sandboxed and will be unable to affect the rest
of the system.

21

5.8 RESULTS

Figure 6. PrairieLearn reporting on compilation errors in question code.

Figure 7. PrairieLearn issue page with a broken question.

For questions that have been developed so far, the Prairie Learn framework has been able to catch all
mistakes in code as they are compiled. Our requirements are that the questions compile, display, and
auto-grade. All of these are implemented within the PL environment. For non-software related testing, our

22

advisor/client has helped catch any mistakes in formatting or material content and has guided us on
finalizing questions as desired.

As seen in Figure 6, PrairieLearn will report compile errors in code and log errors whenever a course
question or user-submitted code is broken. In Figure 7 you can see when a question creates an error,
PrairieLearn automatically creates an issue and notifies the instructor and administrators. This makes it
extremely easy to keep track of issues and test new questions.

23

6 Implementation

Our implementation plan starts with the creation of several virtual machine servers to run PrairieLearn, and
a load balancer. On each of the PrairieLearn servers, we will apply our image from Design 1, and get all of
them up and running. We will also set up the load balancer to direct traffic between the PrairieLearn
servers. Finally, we will implement each question in the course Git repository, and create a shared database
server for each PrairieLearn server to access. The shared database server will allow every PrairieLearn server
to be connected with the same user database.

To set up a server we first need to get the university to create a virtual machine for each one. This virtual
machine will be using Ubuntu 22.04 LTS as that is what PrairieLearn specifies it is made to work with. Then,
we need to ask the university for a signed SSL certificate so that students aren’t greeted with warnings
whenever they access the website.

Once we have the certificate and virtual machine, we can set up our server. First, we will set up SSH and the
firewall. The firewall will only allow port 22 (SSH), 80 (HTTP), and 443 (HTTPS). SSH will be set up to use
multi-factor authentication and public key authentication. Then, we will install the requisite software for
each server. This includes Nginx (a reverse proxy software), Docker (a virtualization program), and
PrairieLearn itself (installed through Git). To configure Nginx, we will set up the port 80 server to redirect to
port 443, forcing users to use HTTPS, and set up the port 443 server to be forwarded to our PrairieLearn
server running on port 3000. We will also set up the 443 server to use our signed certificates we got from the
university. Finally, setting up PrairieLearn only requires running a startup script, creating an account, and
adding a course that is linked to our GitLab repository.

Once each server is set up, we will set up a load balancing server and a database server. The load balancing
server will act as the entrypoint into the network for our users. It will direct traffic and keep track of how
many users are connecting to each PrairieLearn server. This maintains as low of a load as possible on each
server, improving performance. Finally, the database server will hold a PostgreSQL database that each
PrairieLearn server connects to. This database stores information like users, grades, and other PrairieLearn
background data. A singular database is important for keeping each PrairieLearn server in sync.

The last step for our implementation is to upload the course content we have been creating throughout the
semester to the production server and begin serving it to students. Once this step is completed, we will have
a fully functioning instance that can be used by students and instructors to create comprehensive course
material.

24

7 Professionalism

7.1 AREAS OF RESPONSIBILITY

Area of Responsibility IEEE-CS/ACM Code of Ethics [1]

Work Competence “2.01. Provide service in their areas of competence, being honest and
forthright about any limitations of their experience and education.”

This code addresses work competence by insisting workers work within
their areas of competence and being forthcoming about limitations.

This differs from the NSPE Canon by going into more detail about what
constitutes deceptive acts and what to do to avoid them.

Financial Responsibility “5.05. Ensure realistic quantitative estimates of cost, scheduling, personnel,
quality and outcomes on any project on which they work or propose to
work, and provide an uncertainty assessment of these estimates.”

This code addresses financial responsibility by insisting followers ensure the
outcomes of their products follow realistic expectations in terms of costs. It
also insists that followers provide uncertainty assessments for any
estimates.

This differs from the NSPE Canon by going into more detail about
quantitative estimates and financial responsibility.

Communication Honesty “1.06. Be fair and avoid deception in all statements, particularly public ones,
concerning software or related documents, methods and tools.”

This code addresses communication honesty by directly enforcing fair and
honest depiction in all statements, especially ones directed at the public.

This differs from NSPE Canon by being more detailed about avoiding
deception and applies these rules to all communication, not just public
statements.

Health, Safety, Well-Being “1.03. Approve software only if they have a well-founded belief that it is safe,
meets specifications, passes appropriate tests, and does not diminish quality
of life, diminish privacy or harm the environment. The ultimate effect of the
work should be to the public good.”

This code addresses health, safety, and well-being by describing how
approved software should be tested and ensured that the outcome would be
to the public good.

This differs from NSPE Canon by insisting that checks for safety, health, and
well-being are done before the software is even approved.

25

Area of Responsibility IEEE-CS/ACM Code of Ethics [1]

Property Ownership “2.03. Use the property of a client or employer only in ways properly
authorized, and with the client’s or employer’s knowledge and consent.”

This code addresses property ownership by insisting its followers only use
property in authorized ways. This means that employees should acquire
consent and the knowledge of the employer before using any property.

This differs from NSPE Canon by further detailing the relationship between
employee and employer.

Sustainability “1.04. Disclose to appropriate persons or authorities any actual or potential
danger to the user, the public, or the environment, that they reasonably
believe to be associated with software or related documents.”

This code addresses sustainability by explicitly mentioning the environment
when addressing health and safety requirements.

This differs from NSPE Canon by mentioning the environment whereas the
Canon doesn’t.

Social Responsibility “Software engineers shall act consistently with the public interest. In
particular, software engineers shall, as appropriate: …”

This code addresses social responsibility by explicitly calling for engineers
to act in accordance with public interest and society as a whole.

This differs from NSPE Canon by describing different situations in which
software engineers in particular handle social responsibility.

Table 3. Areas of responsibility IEEE-CS/ACM CoE

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Area of Responsibility Applies to us? Team
Performance

Justification

Work Competence Yes, because we need to
provide a service
competently to the
students of ISU.

High We are working hard within our
means to produce a meaningful
product that will improve the
course and student learning.

Financial Responsibility No, because our project
is entirely run using free
resources.

N/A We are not paying for any part of
the project. Finances do not affect
our project.

26

Area of Responsibility Applies to us? Team
Performance

Justification

Communication
Honesty

Yes, we need to
communicate honestly
with students and the
advisor.

High We have never lied or otherwise
been dishonest to the clients or
public.

Health, Safety,
Well-Being

No, our project doesn’t
affect the health and
safety of anyone.

N/A Our project does not impact the
physical world in any meaningful
way.

Property Ownership Yes, we are using the
property of several
organizations and must
be respectful of that.

High We are using PrairieLearn within
its license’s use cases. We are also
being respectful of the computing
resources our servers borrow from
the university by keeping them
secure.

Sustainability Yes, our project uses
electricity for running
servers and software, so
we need to be mindful
of its impact.

Low Due to the small footprint of our
project, we have not looked into
the environmental impacts of our
project very much.

Social Responsibility Yes, our project seeks to
improve the lives of ISU
students and
instructors.

Medium Our project focuses on a small
niche of the university, only
affecting one course’s students and
instructors. This makes it difficult
to track how much we improve the
public good.

Table 4. Project specific responsibility areas

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

The most applicable professional responsibility area for our project is the work competence responsibility.
As our project will be affecting students and instructors in future sections of CPR E 288, we need to ensure
our project is up to standards. We also need to ensure our project will fulfill requirements put forth by our
advisor and the course’s original intent. If our work does not meet standards it will become useless for the
client and have wasted everyone’s time. Thus, we need to keep our standards high and provide an effective
service for the students of CPR E 288.

27

8 Closing Material

8.1 DISCUSSION

Our plan for the project fulfills every requirement we’ve set forward. All of the security requirements are
fulfilled by our implementation of Design 1. Every functional requirement has been fulfilled, bar the ongoing
effort to produce course content and the stretch goals of the emulators. For next semester, we have a clear
plan set in motion that will create a meaningful project at the end.

8.2 CONCLUSION

We started this project setting out to create a learning environment for the course CPR E 288. To do this, we
were given a framework by our advisor and tasked with creating a course in PrairieLearn that would
sufficiently test student knowledge over every assignment from the original course. Over the course of this
first semester we have successfully created content for nearly half of the homework assignments, as well as
set up secure production environments for the content to be hosted on.

The biggest roadblock to achieving the goal of creating content for every assignment was a lack of
understanding and familiarity with the environment. It took us around 3 weeks to really get to know
PrairieLearn, and to this day we are still uncovering new techniques with the framework. This lack of
understanding slowed progress, and a lot of early on issues could have been solved by better documentation
and communication.

8.3 REFERENCES

[1] IEEE, “Code of Ethics | IEEE Computer Society,” Computer.org, 2017.
https://www.computer.org/education/code-of-ethics (accessed Dec. 01, 2023).

[1] “PrairieLearn,” ReadTheDocs.io. https://prairielearn.readthedocs.io/en/latest/ (accessed Dec. 01,
2023).

8.4 APPENDICES

PrairieLearn Documentation: https://prairielearn.readthedocs.io/en/latest/

8.4.1 TEAM CONTRACT

Team Members:

Carter Murawski Chris Costa Matt Graham

Tyler Weberski William Hudson Andrew Winters

Team Procedures
1. Day, time, and location (face-to-face or virtual) for regular team meetings:

a. Face to face Thursday 12:30 pm at Library
2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail,

phone, app, face-to-face):
a. Discord and in-person at meetings

3. Decision-making policy (e.g., consensus, majority vote):

https://www.computer.org/education/code-of-ethics
https://prairielearn.readthedocs.io/en/latest/
https://prairielearn.readthedocs.io/en/latest/

28

a. Majority vote
4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived):
a. Gitlab will store notes, note taking will rotate between members.

Participation Expectations
1. Expected individual attendance, punctuality, and participation at all team meetings:

a. Everyone will be in attendance, on time, and participating. Members will notify the team
ahead of time if they are unable to attend.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
a. Each member will contribute to assignments and ensure everything is completed on time

and will communicate if something is at risk of being delayed.
3. Expected level of communication with other team members:

a. Being available every day, and able to respond within a timely manner to whatever
necessary task/issue needs to be resolved (within 24hrs).

4. Expected level of commitment to team decisions and tasks:
a. When the majority votes, that will be the final decision for the group unless there is a vote

following the previous one to modify the decision.

Leadership
1. Leadership roles for each team member (e.g., team organization, client interaction, individual

component design, testing, etc.):
a. Each member will share leadership roles
b. Different members will take the lead on more specialized tasks as needed

2. Strategies for supporting and guiding the work of all team members:
a. Weekly meetings where we can set tasks for the next week to complete before the next

meeting.
b. Progress checks to ensure a weekly goal has been met
c. Everyone knows who is supposed to do what task and when.

3. Strategies for recognizing the contributions of all team members:
a. Checking assigned tasks within Gitlab to see who has completed an issue

Collaboration and Inclusion
1. Describe the skills, expertise, and unique perspectives each team member brings to the team.

● Chris Costa: Software Engineering
● Matt Graham: Software Engineering, Cyber Security
● Carter Murawski: Electrical Engineering, Embedded systems
● Tyler Weberski: Software Engineering
● Andrew Winters: Electrical Engineering
● Mitch Hudson: Cyber Security

2. Strategies for encouraging and support contributions and ideas from all team members:
a. Everyone participates in active communication and collaboration on tasks.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team
member inform the team that the team environment is obstructing their opportunity or ability to
contribute?)

a. Communicate with the team if any issues arise before they become a problem.

29

Goal-Setting, Planning, and Execution
1. Team goals for this semester:

a. Reach milestones on time.
b. Be in a position for a smooth transition from planning to development.

2. Strategies for planning and assigning individual and teamwork:
a. Within GitLab, staying on top of the storyboard, assigning tasks to individuals and making

sure everyone has something to work on at all times.
3. Strategies for keeping on task:

a. Keeping everyone up to date and informed on tasks through Discord and Gitlab

Consequences for Not Adhering to Team Contract
1. How will you handle infractions of any of the obligations of this team contract?

Communicate with a friendly reminder
a. Meet as a group and discuss the issue and why it happened, then bring it to a TA to seek

further guidance and assistance.
2. What will your team do if the infractions continue?

a. First meet as a team and discuss why these issues may occur and figure it out there
b. Next steps would be involving TA as well to continue
c. If previous steps don’t resolve the issue, coming to the professor and trying to resolve the

issue

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

NAME Carter Murawski DATE 8/31/2023

NAME Matt Graham DATE 8/31/2023

NAME Chris Costa DATE 8/31/2023

NAME Tyler Weberski DATE 8/31/2023

NAME William Hudson DATE 8/31/2023

NAME Andrew Winters DATE 8/31/2023

